Abstract
Antimicrobial activity of silver nanoparticles is gaining importance due its broad spectrum of targets in cell compared to conventional antimicrobial agents. In this context, silver nanoparticles were synthesized by gamma irradiation-induced reduction method of acrylamide and itaconic acid with irradiation dose up to 70 kGy. Silver nanoparticles were examined by Fourier-transform infrared, scanning electron microscopic images (SEM), and ultraviolet–visible spectrophotometer. The particle size was determined by X-ray diffraction, transmission electron microscopy (TEM), and dynamic light scattering. The antibacterial effect was studied by disk diffusion method against some bacterial pathogenic strains. Silver nanoparticles showed promising activity against Pseudomonas aeruginosa and slightly active against Escherichia coli, methicillin-resistant Staphylococcus aureus, and Klebsiella pneumonia. The bactericidal effect of silver nanoparticles was tested against P. aeruginosa. The killing rate of P. aeruginosa was found to be 90 % of viability at (100 μl/ml) of silver nanoparticles. Exposure of P. aeruginosa cells to silver nanoparticles caused fast loss of 260 nm absorbing materials and release of potassium ions. The TEM and SEM observation showed that silver nanoparticles may destroy the structure of bacterial cell membrane in order to enter the bacterial cell resulting in the leakage of the cytoplasmic component and the eventual death.