A Dynamic Tricopper Double Helicate

Abstract
The reaction between 8-aminoquinoline, 1,10-phenantholine-2,9-dicarbaldehyde, and copper(I) tetrafluoroborate gave a quantitative yield of a tricopper double helicate. The presence of dynamic covalent imine (CN) bonds allowed this assembly to participate in two reactions not previously known in helicate chemistry: 1) It could be prepared through subcomponent substitution from a dicopper double helicate that contained aniline residues. An electron-poor aniline was quantitatively displaced; a more electron-rich aniline competed effectively with the aminoquinoline, setting up an equilibrium between dicopper and tricopper helicates that could be displaced towards the tricopper through the addition of further copper(I). 2) Both dicopper and tricopper helicates could be prepared simultaneously from a mixture of phenanthroline dialdehyde, aniline, and aminoquinoline, which contained all possible imine condensation products in equilibrium. Following the addition of copper(I), thermodynamic equilibration on both covalent and coordinative levels eliminated all partially-formed and mixed imine ligands from the mixture, leaving the helicates as exclusive products.