Two distinct lamellae orientaitons have been identified by small-angle neutron scattering (SANS) in dynamically sheared poly(ethylene-propylene)-poly(ethylethylene) (PEP-PEE) diblock copolymer melts. Near the order-disorder transition temperature, T↦TODT, and at low shear frequencies, the lamellae arrange with unit normal perpendicular to the flow direction and parallel to the velocity gradient direction (parallel orientation). Higher frequency processing leads to lamellae with unit normal permendicular to both the flow and velocity gradient directions (perpendicular orientation). The crossover from low to high frequency behavior occurs at ω≈τ-1 where τ is the relaxation time for local domain deformations. At temperatures further from the ODT, T ≪TODT, the parallel orientation is obtained at all shearing frequencies. Based on dynamic and steady shear rheological measurements we propose two mechanisms to account for these results. The perpendicular orientation is proposed to arise from shear-induced disordering, followed by reordering in the perpendicular direction due to the effect of vorticity. Parallel lamellae are believed to be a manifestation of defect mediated stress relaxation. These findings are supported by additional experiments on various other shear-oriented polyolefin diblock copolymers