Acute Respiratory Distress Syndrome Subphenotypes Respond Differently to Randomized Fluid Management Strategy

Abstract
We previously identified two acute respiratory distress syndrome (ARDS) subphenotypes in two separate randomized controlled trials with differential response to positive end-expiratory pressure. To identify these subphenotypes in a third ARDS cohort, to test whether subphenotypes respond differently to fluid management strategy, and to develop a practical model for subphenotype identification. We used latent class analysis of baseline clinical and plasma biomarker data to identify subphenotypes in FACTT (Fluid and Catheter Treatment Trial; n = 1,000). Logistic regression was used to test for an interaction between subphenotype and treatment for mortality. We used stepwise modeling to generate a model for subphenotype identification in FACTT and validated its accuracy in the two cohorts in which we previously identified ARDS subphenotypes. We confirmed that a two-class (two-subphenotype) model best described the study population. Subphenotype 2 was again characterized by higher inflammatory biomarkers and hypotension. Fluid management strategy had significantly different effects on 90-day mortality in the two subphenotypes (P = 0.0039 for interaction); mortality in subphenotype 1 was 26% with fluid-liberal strategy versus 18% with fluid-conservative, whereas mortality in subphenotype 2 was 40% with fluid-liberal strategy versus 50% in fluid-conservative. A three-variable model of IL-8, bicarbonate, and tumor necrosis factor receptor-1 accurately classified the subphenotypes. This analysis confirms the presence of two ARDS subphenotypes that can be accurately identified with a limited number of variables and that responded differently to randomly assigned fluid management. These findings support the presence of ARDS subtypes that may require different treatment approaches.