Determinants of the Relative Reduction Potentials of Type-1 Copper Sites in Proteins
- 1 June 2004
- journal article
- research article
- Published by American Chemical Society (ACS) in Journal of the American Chemical Society
- Vol. 126 (25), 8010-8019
- https://doi.org/10.1021/ja049345y
Abstract
The relative Cu2+/Cu+ reduction potentials of six type-1 copper sites (cucumber stellacyanin, P. aeruginosa azurin, poplar plastocyanin, C. cinereus laccase, T. ferrooxidans rusticyanin, and human ceruloplasmin), which lie in a reduction potential range from 260 mV to over 1000 mV, have been studied by quantum mechanical calculations. The range and relative orderings of the reduction potentials are reproduced very well compared to experimental values. The study suggests that the main structural determinants of the relative reduction potentials of the blue copper sites are located within 6 Å of the Cu atoms. Further analysis suggests that the reduction potential differences of type-1 copper sites are caused by axial ligand interactions, hydrogen bonding to the SCys, and protein constraint on the inner sphere ligand orientations. The low reduction potential of cucumber stellacyanin is due mainly to a glutamine ligand at the axial position, rather than a methionine or a hydrophobic residue as in the other proteins. A stronger interaction with a backbone carbonyl group is a prime contributor to the lower reduction potential of P. aeruginosa azurin as compared to poplar plastocyanin, whereas the reverse is true for C. cinereus laccase and T. ferrooxidans rusticyanin. The lack of an axial methonine ligand also contributes significantly to the increased reduction potentials of C. cinereus laccase and human ceruloplasmin. However, in the case of C. cinereus laccase, this increase is attenuated by the presence of only one amide NH hydrogen bond to the SCys rather than two in the other proteins. In human ceruloplasmin the reduction potential is further increased by the structural distortion of the equatorial ligand orientation.Keywords
This publication has 51 references indexed in Scilit:
- Density functional calculation of pK a values and redox potentials in the bovine Rieske iron-sulfur proteinJBIC Journal of Biological Inorganic Chemistry, 2002
- Reduction potentials of blue and purple copper proteins in their unfolded states: a closer look at rack-induced coordinationJBIC Journal of Biological Inorganic Chemistry, 1998
- Microscopic and semimacroscopic redox calculations: what can and cannot be learned from continuum modelsJBIC Journal of Biological Inorganic Chemistry, 1997
- NMR Solution Structure of Cu(I) Rusticyanin fromThiobacillus ferrooxidans: Structural Basis for the Extreme Acid Stability and Redox PotentialJournal of Molecular Biology, 1996
- Multiple Wavelength Anomalous Diffraction (MAD) Crystal Structure of Rusticyanin: a Highly Oxidizing Cupredoxin with Extreme Acid StabilityJournal of Molecular Biology, 1996
- The Cupric Geometry of Blue Copper Proteins is not StrainedJournal of Molecular Biology, 1996
- The X-ray structure of human serum ceruloplasmin at 3.1 Å: nature of the copper centresJBIC Journal of Biological Inorganic Chemistry, 1996
- Engineering type 1 copper sites in proteinsFEBS Letters, 1993
- X-ray Analysis and Spectroscopic Characterization of M121Q AzurinJournal of Molecular Biology, 1993
- Electrostatic effects of charge perturbations introduced by metal oxidation in proteinsJournal of Molecular Biology, 1988