All of the important oxidants in polluted air are formed there by chemical reactions which occur among the primary pollutants. The most abundant of these oxidants is ozone which is formed in a cycle involving nitric oxide, nitrogen dioxide, atmospheric oxygen, and hydrocarbons. This ozone is best understood, not as a reaction product, but as an intermediate in steady-state concentration between formation and disappearance reactions. Hydrocarbons permit accumulation of ozone by reacting to scavenge the nitric oxide which would otherwise remove the ozone. The amount of ozone which can be formed in ambient polluted air is limited to about 1 ppm because these scavenging reactions become less effective when the nitric oxide concentration becomes very small. The peroxyacyl nitrates are a group of oxidants which result from reactions between oxides of nitrogen and organic pollutants. Olefinic and aromatic hydrocarbons make the largest contribution to PAN formation; saturates contribute little if any. The role of nitrogen dioxide and other oxidizing agents is also discussed.