GABA immunoreactive neurons in rat visual cortex

Abstract
An antiserum to γ-aminobutyric acid (GABA) was used in a light and electron microscopic immunocytochemical study to determine the morphology and distribution of GABA-containing neurons in the rat visual cortex and to ascertain whether all classes of nonpyramidal neurons in this cortex are GABAergic. The visual cortex used for light microscopy was prepared in such a way that the antibody penetrated completely through tissue sections, and in these sections large numbers of GABA immunoreactive neurons were apparent. The labeled neurons could be identified as being either multipolar, bitufted, bipolar, or horizontal neurons. In layers II through Via, GABA immunostained cells were distributed uniformly and accounted for approximately 15% of all neurons, but in layer I all neurons appeared to be immunostained. Electron microscopy of GABA immunostained visual cortex prepared to ensure good fine structural preservation confirmed the presence in layers II through Via of numerous immunoreactive bipolar neurons, both small and large varieties, as well as multipolar and bitufted neurons. Additionally, electron microscopy reveals that astrocytes are frequently GABA immunoreactive. From a correlated light and electron microscopic evaluation of neurons in GABA immunostained visual cortex, it was possible to confirm which kinds of neurons are GABAergic and what proportion of the neuronal population they represent. Thus, from an analysis of some 950 neurons, it was found that pyramidal neurons were never immunoreactive and that except for 20% of the bipolar cell population, all examples of other types of nonpyramidal neurons encountered in this material were GABA immunoreactive.

This publication has 69 references indexed in Scilit: