Induction of a Sodium Ion Influx by Progesterone in Human Spermatozoa1

Abstract
In human spermatozoa, progesterone (P(4)) induces a depolarization of the plasma membrane, a rapid calcium (Ca(2+)) influx, and a chloride efflux. The sodium ion (Na(+)) was partly responsible for the P(4)-induced depolarizing effect but was not required for calcium influx. We used fluorescent probes for spectrofluorometry to investigate whether P(4) induced a Na(+) influx and whether voltage-operated channels were involved in Na(+) and/or Ca(2+) entries. We found that 10 microM P(4) significantly increased intracellular Na(+) concentration from 17.8 +/- 2.0 mM to 27.2 +/- 1. 6 mM (P < 0.001). Prior incubation of spermatozoa with 10 microM flunarizine, a Na(+) and Ca(2+) voltage-dependent channel blocker, inhibited the sodium influx induced by 10 microM P(4) by 84.6 +/- 15.4%. The Ca(2+) influx induced by 10 microM P(4) was also significantly inhibited in a Na(+)-containing medium by 10 microM flunarizine or 10 microM pimozide (P < 0.01). In contrast, flunarizine had no inhibitory effect on the Ca(2+) influx induced by 10 microM P(4) in spermatozoa incubated in Na(+)-depleted medium. The P(4)-promoted acrosome reaction (AR) was significantly higher when spermatozoa were incubated in Na(+)-containing medium as compared to Na(+)-depleted medium. These data demonstrate that P(4) stimulates a Na(+) influx that could be involved in the AR completion. They also suggest that voltage-dependent Na(+) and Ca(2+) channels are implicated in P(4)-mediated signaling pathway in human spermatozoa.