Fetal Mitochondrial Heart and Skeletal Muscle Damage in Erythrocebus patas Monkeys Exposed in Utero to 3'-Azido-3'-Deoxythymidine

Abstract
3'-azido-3'-deoxythymidine (AZT) is given to pregnant women positive for the human immunodeficiency virus type 1 (HIV-1) to reduce maternal–fetal viral transmission. To explore fetal mitochondrial consequences of this exposure, pregnant Erythrocebus patas monkeys were given daily doses of 1.5 mg (21% of the human daily dose) and 6.0 mg (86% of the human daily dose) of AZT/kg body weight (bw), for the second half of gestation. At term, electron microscopy of fetal cardiac and skeletal muscle showed abnormal and disrupted sarcomeres with myofibrillar loss. Some abnormally shaped mitochondria with disrupted cristae were observed in skeletal muscle myocytes. Oxidative phosphorylation (OXPHOS) enzyme assays showed dose-dependent alterations. At the human-equivalent dose of AZT (6 mg of AZT/kg bw), there was an ~85% decrease in the specific activity of NADH dehydrogenase (complex I) and three- to sixfold increases in specific activities of succinate dehydrogenase (complex II) and cytochrome-c oxidase (complex IV). Furthermore, a dose-dependent depletion of mitochondrial DNA levels was observed in both tissues. The data demonstrate that transplacental AZT exposure causes cardiac and skeletal muscle mitochondrial myopathy in the patas monkey fetus.
Keywords