A protein required for transcriptional regulation of Agrobacterium virulence genes spans the cytoplasmic membrane

Abstract
The VirA protein is one of two proteins required for transcriptional activation of Agrobacterium tumefaciens virulence genes in response to phenolic compounds released by plants during infection. We describe two experimental approaches which indicate that this protein has a transmembrane topology. First, spheroplasts of Escherichia coli or wild-type A. tumefaciens expressing the VirA protein were treated with proteinase K to digest periplasmic proteins, and the remaining proteins were immunologically stained on Western blots (immunoblots) by using anti-VirA antibody. Second, transposon TnphoA was used to generate translational fusions between virA and phoA, the latter of which is the structural gene for alkaline phosphatase. Both techniques indicated that VirA spans the cytoplasmic membrane, with approximately 275 amino acids near the amino terminus being localized in the periplasmic space and the rest of the protein being localized in the cytoplasm. We also show that overexpression of VirA in E. coli is deleterious to cell growth and that this phenomenon depends on the synthesis of either the second hydrophobic core or some nearby portion of the VirA protein.