Morphology of expiratory neurons of the Bötzinger complex: An HRP study in the cat

Abstract
In anesthetized and artificially ventilated cats, the physiological and morphological properties of expiratory neurons or their axons of the Bötzinger complex (BOT) were studied using intracellular recording and intracellular HRP labeling techniques. Thirteen expiratory neurons (nine cell somata and four axons) were successfully stained. Four of them were motoneurons, having relatively large cell somata in the retrofacial nucleus (RFN) and axons without any collaterals inside the brainstem. All the motoneurons showed a plateau shape of depolarization potentials during the expiratory phase. Any of the other nine expiratory neurons exhibited augmenting type firing or membrane potential changes during the expiratory phase. In five out of nine augmenting neurons, cell somata were stained and located ventral to the RFN. In four, only axons were stained. The majority of the augmenting neurons had two major axonal branches: one traveling toward the contralateral side and the other descending ipsilaterally in the brainstem. The most striking feature of the axonal trajectory was that all of the stained augmenting expiratory neurons, including the axons, had collateral branches with synaptic boutons in the BOT area, thus indicating that BOT expiratory neurons interact with some respiratory neurons in the BOT area and its vicinity.

This publication has 24 references indexed in Scilit: