Abstract
The problem of an unsteady axisymmetric expansion of a monatomic gas into a vacuum is considered in the limit of small source Knudsen number. It is shown that a solution of the Boltzmann equation for Maxwell molecules valid for large time can be constructed, which matches with the known equilibrium solution for an inviscid expansion of a fixed mass of gas into a vacuum provided that the region near the zero density front is excluded. This solution is formally the same as that obtained for the similar problem of steady spherical expansion into a vacuum—the variations along each particle path of the unsteady flow being the same as that in the steady flow.Near the front, the expansion procedure breaks down and the equations require a different scaling. A modified form of the Boltzmann equation is obtained which leads to a corresponding set of moment equations. Unfortunately, the set of moment equations is no longer closed and no essential simplification has been made.