Abstract
1. The metabolism of parathion by rat liver microsomes is affected by various enzyme inhibitors in a manner quite typical of the ‘mixed-function oxidase’ enzyme systems. 2. With many of these inhibitors (p-chloromercuribenzoate, Cu2+, 8-hydroxyquinoline) the conversion of parathion into diethyl hydrogen phosphorothionate is less inhibited than conversion into diethyl 4-nitrophenyl phosphate (paraoxon). 3. Compounds containing reduced sulphur stimulate the overall metabolism of parathion. However, the conversion of parathion into diethyl hydrogen phosphorothionate is stimulated more than its conversion into paraoxon. 4. The metabolism of parathion to diethyl hydrogen phosphorothionate is also stimulated by EDTA, Ca2+ and Ba2+, but these stimulatory effects are not additive. 5. The electron acceptors FAD, riboflavine, menadione and methylene blue exhibit a concentration-dependent differential inhibition of the metabolism of parathion to diethyl hydrogen phosphorothionate and to paraoxon. 6. The concentration of parathion required for the half-maximal rate of production of diethyl hydrogen phosphorothionate is significantly different from the concentration required for half-maximal rate of production of paraoxon. 7. The results are discussed in terms of either two separate enzyme systems metabolizing parathion to diethyl hydrogen phosphorothionate and to paraoxon or two different binding sites for parathion, which share a common electron-transport pathway.