Abstract
The permittivity and loss tangent of naturally occurring ice and snow are considered. The direct-current conductivity is considered only when it is of importance to the alternating-current and radio-frequency properties. Laboratory measurements on pure ice, and deliberately contaminated ice, are included to help in explaining and extrapolating the behaviour of natural ice and snow. The lower band of frequencies from 10 c./sec. to 1 Mc./sec. is occupied by a relaxation spectrum in which the relative permittivity falls from approximately 100 to 3. The loss tangent reaches a maximum at a frequency which varies from 50 c./sec. to 50 kc./sec. as the temperature increases from −60°C. to 0°C. We are interested in the effect of snow density, impurities, stress, crystal size, and orientation. For frequencies much greater than 1 Mc./sec., the relative permittivity is 3.17±0.07. The loss tangent reaches a minimum value at approximately 1,000 Mc./sec. beyond which the dominant influence is infrared absorption. The minimum is 10−3 at 0°C or 2×10−5 at −60°C. These values are greatly increased by impurities or free water. Some possible applications to glaciological field measurements are mentioned. Revue des propriétés diélectriques de la glace et la neige. La permitivité et le facteur de perte de la glace et de la neige naturellement rencontrées sont discutés. La conductivité en courant continu est seulement considérée dans la mesure où elle est importante pour les propriétés des courants alternatifs et des fréquences radio. Des mesures de laboratoire sur de la glace pure, ou artificiellement impure, sont ajoutées pour aider l’explication et l’extrapolation du comportement de la glace et de la neige naturelle. La basse bande de fréquences de to Hz à 1 MHz est occupée par un spectre de relaxation où la permitivité relative tombe de 100 à 3. Le facteur de perte atteint un maximum pour une fréquence qui varie de 50 Hz à 50 kHz lorsque la température croit de −60°C à 0°C. Nous sommes intéressés par l’effet de la densité de la neige, des impuretés, des contraintes, des dimensions des cristaux et de leur orientation. Pour les fréquences supérieures à 1 MHz. la permitivité relative est de 3,17+0,07. Le facteur de perte atteint un minimum pour environ 1000 MHz au-delà de laquelle l’influence dominante est une absorption infra-rouge. Le minimum est 10−3 à 0°C ou 2.10−5 à −60°C. Ces valeurs sont considérablement augmentées par des impuretés ou de l’eau libre. Quelques applications possibles à la glaciologie sont mentionnées. Dielektrische Eigenschaften von Eis und Schnee—eine Übersicht. Die Durchlässigkeit und die Schwundgrenze von natürlichem Eis und Schnee werden untersucht. Die Gleichstrom-Konduktivität wird nur dann in Betracht gezogen, wenn sie für das Verhalten des Wechselstromes und der Radio-Frequenzen von Bedeutung ist. Zur Deutung und Extrapolation des Verhaltens von natürlichem Eis und Schnee werden Labormessungen an reinem Eis und künstlich verschmutztem Eis herangezogen. Der niedrige Frequenzbereich von 10 Hz bis 1 MHz wird von einem Relaxationsspektrum eingenommen, in dem die relative Durchlässigkeit von ca. 100 auf 3 abfällt. Die Schwundgrenze erreicht ein Maximum bei einer Frequenz, die von 50 Hz bis 50 KHz wechselt, wenn die Temperatur von −60°C auf 0°C ansteigt. Weiter interessiert der Einfluss der Dichte, der Verunreinigungen, der Spannung, der Kristallgrösse und -orientierung. Für Frequenzen über 1 MHz beträgt die relative Durchlässigkeit 3,17+0,07. Die Schwundgrenze erreicht ein Minimum bei ca. 1000 MHz; jenseits davon ist die Infrarot-Absorption der dominierende Einfluss. Das Minimum beträgt 10−3 bei 0°C oder 2.10−5 bei −60°C. Diese Werte werden durch Verunreinigungen oder freies Wasser beträchtlich erhöht. Einige Anwendungsmöglichkeiten für glaziologische Feldmessungen werden erwähnt.

This publication has 32 references indexed in Scilit: