New measurements of microwave transitions in the water dimer

Abstract
New measurements of ten K=1 lines, including six Q type and four R type, were made on the completely protonated species of the water dimer. For some of these lines, as well as for some K=0 transitions known from the literature, Stark coefficients were determined, and these Stark coefficients provide a confirmation of the assignments. The new K=1 measurements show that the splitting associated with the (HF)2-like tunneling motion decreases from about 19.5 GHz for K=0 to about 16.2 GHz for K=1. To understand the fact that K=1 lines are populated in our 1 K beam, we must assume, in accordance with the results of beam studies on other molecules, that levels of different nuclear spin modification relax separately. In an attempt to gain information on tunneling splittings other than that caused by the (HF)2-like motion, we have made new measurements on 1–0 and 2–1 transitions with K=0 for several partially deuterated species, in which the (HF)2-like motion cannot occur. Small splittings ranging from 4 to 145 MHz were observed. Because of the nature of the tunneling motions involved, these new data yield only the difference of the tunneling splitting in the upper and lower states of the transition.