Abstract
The available compositional data on planets and satellites can be used to place stringent limits on the thermal environment in the solar nebula. The densities of the terrestrial planets, Ceres and Vesta, the Galilean satellites, and Titan; the atmospheric compositions of several of these bodies; and geochemical and geophysical data on the earth combine to define a strong dependence of formation temperature on heliocentric distance. The pressure and temperature dependences of the condensation process are separable in the sense that the variation of the deduced formation temperatures with heliocentric distance is insensitive to even very diverse assumptions regarding the pressure profile in the nebula. It is impossible to reconcile the available compositional data with any model in which the formation temperatures of these bodies are determined by radiative equilibrium with the sun, regardless of the sun's luminosity. Rather, the data support Cameron's hypothesis of a dense, convective solar nebula, opaque to solar radiation, with an adiabatic temperature-pressure profile.