Ground-state correlations of quantum antiferromagnets: A Green-function Monte Carlo study

Abstract
We have studied via a Green-function Monte Carlo (GFMC) method the S=(1/2 Heisenberg quantum antiferromagnet in two dimensions. We use a well-known transformation to map the spin problem onto a system of hard-core bosons that allows us to exploit interesting analogies between magnetism and superfluidity. The GFMC method is a zero-temperature stochastic method that projects out the component of the true ground state in a given variational wave function. This method is complementary to previously used finite-temperature Monte Carlo methods and is well suited to studying the ground state and low-lying excited states. Starting with even a simple wave function, e.g., the classical Néel state, the GFMC method can obtain the short-range correlations very accurately, and we find the ground-state energy per site E0/J=-0.6692(2). We show that it is important to include the zero-point motion of the elementary excitations in the ground state and by a spin-wave analysis find that it produces long-range correlations in the wave function. Upon inclusion of such long-range correlations, we obtain a staggered magnetization m°=0.31(2) and the structure factor scrS(q)∼q at long wavelengths. Using the Feynman-Bijl relation, from the slope we deduce the renormalization of the spin-wave velocity by quantum fluctuations to be Zc==c/cs=1.14(5).