Role of integration host factor in the regulation of the glnHp2 promoter of Escherichia coli.

Abstract
The glnHPQ operon of Escherichia coli encodes components of the high-affinity glutamine transport system. One of the two promoters of this operon, glnHp2, is responsible for expression of the operon under nitrogen-limiting conditions. The general nitrogen regulatory protein (NRI) binds to two overlapping sites centered at -109 and -122 from the transcription start site and, when phosphorylated, activates transcription of glnHp2 by catalyzing isomerization of the closed sigma 54-RNA polymerase promoter complex to an open complex. The DNA-bending protein integration host factor (IHF) binds to a site immediately upstream of glnHp2 and enhances the activation of open complex formation by NRI phosphate. The NRI-binding sites can be moved several hundred base pairs further upstream without altering the ability of NRI phosphate to activate open complex formation. We propose that the IHF-induced bend can facilitate or obstruct the interaction between NRI phosphate and the closed complex depending on the relative positions of NRI phosphate and sigma 54-RNA polymerase on the DNA.