Abstract
Lake trout (Salvelinus namaycush) ingestion rates in a bioenergetics and contaminant dynamics model were estimated directly from contaminant concentrations in lake trout and their prey, rather than from the sum of growth and predicted metabolism. Elimination rates for PCB and DDE, but not for mercury, were dependent on either body mass or lipid content. Concentrations in lake trout responded rapidly to changes in concentration of their prey. This was due primarily to growth dilution and not contaminant elimination, especially for DDE and PCB. Changes in lipid concentrations, therefore, have only minor effects on final concentrations in lake trout, and it is not appropriate to lipid normalize PCB or DDE concentrations when examining trends in whole-body concentrations for this species. Concentrations of PCBs and lipids have declined in lake trout from 1977 to 1988. The drop in PCB concentrations is probably not caused primarily by the lowered lipid concentrations but is the result of either a reduction in feeding rates and improved growth efficiencies, a reduction in PCB concentrations in alewife (Alosa pseudoharengus), or an undocumented change in prey selection. Models based on chemical kinetics across the gastrointestinal tract are more consistent with observed data than models based on a constant contaminant assimilation rate and direct excretion.

This publication has 13 references indexed in Scilit: