Structure−Activity Relationships of α-Ketooxazole Inhibitors of Fatty Acid Amide Hydrolase

Abstract
A systematic study of the structure−activity relationships of 2b (OL-135), a potent inhibitor of fatty acid amide hydrolase (FAAH), is detailed targeting the C2 acyl side chain. A series of aryl replacements or substituents for the terminal phenyl group provided effective inhibitors (e.g., 5c, aryl = 1-napthyl, Ki = 2.6 nM), with 5hh (aryl = 3-ClPh, Ki = 900 pM) being 5-fold more potent than 2b. Conformationally restricted C2 side chains were examined, and many provided exceptionally potent inhibitors, of which 11j (ethylbiphenyl side chain) was established to be a 750 pM inhibitor. A systematic series of heteroatoms (O, NMe, S), electron-withdrawing groups (SO, SO2), and amides positioned within and hydroxyl substitutions on the linking side chain were investigated, which typically led to a loss in potency. The most tolerant positions provided effective inhibitors (12p, 6-position S, Ki = 3 nM, or 13d, 2-position OH, Ki = 8 nM) comparable in potency to 2b. Proteome-wide screening of selected inhibitors from the systematic series of >100 candidates prepared revealed that they are selective for FAAH over all other mammalian serine proteases.

This publication has 78 references indexed in Scilit: