Abstract
The filtering problem concerns the estimation of a stochastic process X from its noisy partial information Y. With the notable exception of the linear-Gaussian situation, general optimal filters have no finitely recursive solution. The aim of this work is the design of a Monte Carlo particle system approach to solve discrete time and nonlinear filtering problems. The main result is a uniform convergence theorem. We introduce a concept of regularity and we give a simple ergodic condition on the signal semigroup for the Monte Carlo particle filter to converge in law and uniformly with respect to time to the optimal filter, yielding what seems to be the first uniform convergence result for a particle approximation of the nonlinear filtering equation.

This publication has 8 references indexed in Scilit: