Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERα negative MDA-MB-435 breast cancer model
- 7 February 2008
- journal article
- research article
- Published by Springer Nature in Breast Cancer Research and Treatment
- Vol. 113 (1), 101-111
- https://doi.org/10.1007/s10549-008-9916-5
Abstract
Metformin, a first line treatment for type 2 diabetes, has been implicated as a potential anti-neoplastic agent for breast cancers as well as other cancers. Metformin is known to work in part through the activation of AMP-dependent kinase (AMPK). AMPK is a key regulator of cellular energy homeostasis, especially under stress conditions where biosynthetic pathways are blocked by the phosphorylation of downstream AMPK substrates. Stimulation of AMPK by metformin resulted in a significant repression of cell proliferation and active MAPK1/2 in both estrogen receptor α (ERα) negative (MDA-MB-231, MDA-MB-435) and positive (MCF-7, T47D) human breast cancer cell lines. However, when ERα negative MDA-MB-435 cells were treated with metformin, they demonstrated increased expression of vascular endothelial growth factor (VEGF) in an AMPK dependent manner; while the ERα positive MCF-7 cells did not. Systemic therapy with metformin was tested for efficacy in an orthotopic model of ERα negative breast cancer performed in athymic nude mice. Surprisingly, metformin therapy significantly improved tumorigenic progression as compared to untreated controls. The metformin-treated group showed increased VEGF expression, intratumoral microvascular density and reduced necrosis. Metformin treatment was sufficient, however, to reduce systemic IGF-1 and the proliferation rate of tumor cells in vascularized regions. The data presented here suggests that, although metformin significantly represses breast cancer cell growth in vitro, the efficacy with respect to its therapeutic application for ERα negative breast cancer lesions in vivo may result in promotion of the angiogenic phenotype and increased tumorigenic progression.This publication has 40 references indexed in Scilit:
- Activation of adenosine monophosphate activated protein kinase inhibits growth of multiple myeloma cellsExperimental Cell Research, 2007
- AMPK regulation of the growth of cultured human keratinocytesBiochemical and Biophysical Research Communications, 2006
- AMP‐dependent protein kinase alpha 2 isoform promotes hypoxia‐induced VEGF expression in human glioblastomaGlia, 2006
- AMP-Activated Protein Kinase Signaling Stimulates VEGF Expression and Angiogenesis in Skeletal MuscleCirculation Research, 2005
- Mimicry of a Cellular Low Energy Status Blocks Tumor Cell Anabolism and Suppresses the Malignant PhenotypeCancer Research, 2005
- Glucose Deprivation Increases mRNA Stability of Vascular Endothelial Growth Factor through Activation of AMP-activated Protein Kinase in DU145 Prostate CarcinomaJournal of Biological Chemistry, 2005
- Does endogenous fatty acid metabolism allow cancer cells to sense hypoxia and mediate hypoxic vasodilatation? Characterization of a novel molecular connection between fatty acid synthase (FAS) and hypoxia‐inducible factor‐1α (HIF‐1α)‐related expression of vascular endothelial growth factor (VEGF) in cancer cells overexpressing her‐2/neu oncogeneJournal of Cellular Biochemistry, 2005
- AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanismsBiochemical and Biophysical Research Communications, 2004
- Identification of Phosphorylation Sites in AMP-activated Protein Kinase (AMPK) for Upstream AMPK Kinases and Study of Their Roles by Site-directed MutagenesisJournal of Biological Chemistry, 2003
- Role of AMP-activated protein kinase in mechanism of metformin actionJournal of Clinical Investigation, 2001