Paracetamol (Acetaminophen): mechanisms of action
Top Cited Papers
- 2 September 2008
- journal article
- review article
- Published by Wiley in Pediatric Anesthesia
- Vol. 18 (10), 915-921
- https://doi.org/10.1111/j.1460-9592.2008.02764.x
Abstract
Paracetamol has a central analgesic effect that is mediated through activation of descending serotonergic pathways. Debate exists about its primary site of action, which may be inhibition of prostaglandin (PG) synthesis or through an active metabolite influencing cannabinoid receptors. Prostaglandin H(2) synthetase (PGHS) is the enzyme responsible for metabolism of arachidonic acid to the unstable PGH(2). The two major forms of this enzyme are the constitutive PGHS-1 and the inducible PGHS-2. PGHS comprises of two sites: a cyclooxygenase (COX) site and a peroxidase (POX) site. The conversion of arachidonic acid to PGG(2) is dependent on a tyrosine-385 radical at the COX site. Formation of a ferryl protoporphyrin IX radical cation from the reducing agent Fe(3+) at the POX site is essential for conversion of tyrosine-385 to its radical form. Paracetamol acts as a reducing cosubstrate on the POX site and lessens availability of the ferryl protoporphyrin IX radical cation. This effect can be reduced in the presence of hydroperoxide-generating lipoxygenase enzymes within the cell (peroxide tone) or by swamping the POX site with substrate such as PGG(2). Peroxide tone and swamping explain lack of peripheral analgesic effect, platelet effect, and anti-inflammatory effect by paracetamol. Alternatively, paracetamol effects may be mediated by an active metabolite (p-aminophenol). p-Aminophenol is conjugated with arachidonic acid by fatty acid amide hydrolase to form AM404. AM404 exerts effect through cannabinoid receptors. It may also work through PGHS, particularly in areas of the brain with high concentrations of fatty acid amide hydrolase.Keywords
This publication has 46 references indexed in Scilit:
- Inducible Nitric Oxide Synthase Mediates Prostaglandin H2 Synthase Nitration and Suppresses Eicosanoid ProductionThe American Journal of Pathology, 2006
- Bidirectional Regulation of Neuronal Nitric-oxide Synthase Phosphorylation at Serine 847 by the N-Methyl-d-aspartate ReceptorJournal of Biological Chemistry, 2004
- A Novel Mechanism of Cyclooxygenase-2 Inhibition Involving Interactions with Ser-530 and Tyr-385Journal of Biological Chemistry, 2003
- Pharmacology and potential therapeutic applications of nitric oxide‐releasing non‐steroidal anti‐inflammatory and related nitric oxide‐donating drugsBritish Journal of Pharmacology, 2002
- Cyclooxygenases: Structural, Cellular, and Molecular BiologyAnnual Review of Biochemistry, 2000
- Characterization of the hypothermic effect of the synthetic cannabinoid HU-210 in the rat. Relation to the adrenergic system and endogenous pyrogensNeuropharmacology, 1995
- Acetaminophen blocks spinal hyperalgesia induced by NMDA and substance PPain, 1994
- Neurotransmitters in Nociceptive Modulatory CircuitsAnnual Review of Neuroscience, 1991
- Acetylsalicylic acid, paracetamol and morphine inhibit behavioral responses to intrathecally administered substance P or capsaicinLife Sciences, 1985
- Inhibition of Prostaglandin Synthetase in Brain explains the Anti-pyretic Activity of Paracetamol (4-Acetamidophenol)Nature, 1972