13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkanoate) synthesis

Abstract
The formation of poly(3-hydroxyalkanoates) (PHAs) in Pseudomonas putida KT2442 from various carbon sources was studied by 13C nuclear magnetic resonance spectroscopy, gas chromatography, and gas chromatography-mass spectroscopy. By using [1-13C]decanoate, the relation between beta-oxidation and PHA formation was confirmed. The labeling pattern in PHAs synthesized from [1-13C]acetate corresponded to the formation of PHAs via de novo fatty acid biosynthesis. Studies with specific inhibitors of the fatty acid metabolic pathways demonstrated that beta-oxidation and de novo fatty acid biosynthesis function independently in PHA formation. Analysis of PHAs derived from [1-13C]hexanoate showed that both fatty acid metabolic routes can function simultaneously in the synthesis of PHA. Furthermore, evidence is presented that during growth on medium-chain-length fatty acids, PHA precursors can be generated by elongation of these fatty acids with an acetyl coenzyme A molecule, presumably by a reverse action of 3-ketothiolase.