An essential role for salicylic acid in AtMYB30‐mediated control of the hypersensitive cell death program in Arabidopsis
- 15 May 2006
- journal article
- Published by Wiley in FEBS Letters
- Vol. 580 (14), 3498-3504
- https://doi.org/10.1016/j.febslet.2006.05.027
Abstract
Salicylic acid (SA) plays a central role in resistance and defense induction in response to pathogen attack, but its role in the activation of the hypersensitive response (HR), a form of programmed cell death associated with resistance of plants, remains to be elucidated. AtMYB30, a R2R3-MYB transcriptional factor which acts as a positive regulator of the HR, is a good model for studying the role of SA in programmed cell death. Here, we demonstrate that AtMYB30 expression in response to an HR-inducing bacterial pathogen is dependent on SA accumulation, but NPR1-independent. Alterations of AtMYB30 expression (overexpression, depletion by antisense strategy, T-DNA insertion mutant) modulate SA levels and SA-associated gene expression. Additionally, mutants or transgenic lines altered in SA accumulation (nahG, sid1, sid2), but not those affected in SA signalling (npr1), abolish the accelerated cell death phenotype conferred by over-expression of AtMYB30. These results suggest that AtMYB30 is involved in an amplification loop or signalling cascade that modulates SA synthesis, which in turn modulates cell death.Keywords
This publication has 29 references indexed in Scilit:
- The Role of Salicylic Acid in the Induction of Cell Death in Arabidopsis acd11Plant Physiology, 2005
- SYSTEMIC ACQUIRED RESISTANCEAnnual Review of Phytopathology, 2004
- Genetic evidence that expression of NahG modifies defence pathways independent of salicylic acid biosynthesis in the Arabidopsis–Pseudomonas syringae pv. tomato interactionThe Plant Journal, 2003
- Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants?Trends in Plant Science, 2003
- Plant pathogens and integrated defence responses to infectionNature, 2001
- The algal polysaccharide carrageenans can act as an elicitor of plant defenceNew Phytologist, 2001
- The Arabidopsis NPR1 Gene That Controls Systemic Acquired Resistance Encodes a Novel Protein Containing Ankyrin RepeatsCell, 1997
- Characterization of an Arabidopsis Mutant That Is Nonresponsive to Inducers of Systemic Acquired Resistance.Plant Cell, 1994
- Characterization of an Arabidopsis Mutant That Is Nonresponsive to Inducers of Systemic Acquired ResistancePlant Cell, 1994