A One-Step Conversion of Benzene to Phenol with a Palladium Membrane

Abstract
Existing phenol production processes tend to be energy-consuming and produce unwanted by-products. We report an efficient process using a shell-and-tube reactor, in which a gaseous mixture of benzene and oxygen is fed into a porous alumina tube coated with a palladium thin layer and hydrogen is fed into the shell. Hydrogen dissociated on the palladium layer surface permeates onto the back and reacts with oxygen to give active oxygen species, which attack benzene to produce phenol. This one-step process attained phenol formation selectivities of 80 to 97% at benzene conversions of 2 to 16% below 250°C (phenol yield: 1.5 kilograms per kilogram of catalyst per hour at 150°C).