Generating Solitons by Phase Engineering of a Bose-Einstein Condensate

Abstract
Quantum phase engineering is demonstrated with two techniques that allow the spatial phase distribution of a Bose-Einstein condensate (BEC) to be written and read out. A quantum state was designed and produced by optically imprinting a phase pattern onto a BEC of sodium atoms, and matter-wave interferometry with spatially resolved imaging was used to analyze the resultant phase distribution. An appropriate phase imprint created solitons, the first experimental realization of this nonlinear phenomenon in a BEC. The subsequent evolution of these excitations was investigated both experimentally and theoretically.