Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols

Abstract
A green single-step synthesis of iron nanoparticles using tea (Camellia sinensis) polyphenols is described that uses no additional surfactants/polymers as capping or reducing agents. The expedient reaction between polyphenols and ferric nitrate occurs within a few minutes at room temperature and is indicated by color changes from pale yellow to dark greenish/black in the formation of iron nanoparticles. The synthesized iron nanoparticles were characterized using transmission electron microscopy (TEM), UV-visible and X-ray diffraction pattern (XRD). The obtained nanoparticles were utilized to catalyze hydrogen peroxide for treatment of organic contamination and results were compared with Fe-EDTA and Fe-EDDS. Bromothymol blue, a commonly deployed pH indicator, is used here as a model contaminant for free radical reactions, due to its stability in the presence of H2O2 and its absorbance in the visible range at pH 6. The concentration of bromothymol blue is conveniently monitored using ultraviolet-visible (UV-Vis) spectroscopy during treatment with iron-catalyzed H2O2. Various concentrations of iron are tested to allow for the determination of initial rate constants for the different iron sources.