Geranylgeranylacetone Induces Apoptosis in HL-60 Cells.

Abstract
Geranylgeranylacetone (GGA) induces apoptosis in human leukemia HL-60 cells in a dose- and time-dependent manner. This effect was completely prevented by the pan-caspase inhibitor z-Val-Ala-Asp(OMe) fluoromethylketone, thereby implicating the caspase cascade in the process. Prior to DNA fragmentation, GGA treatment markedly activated caspase-3(-like) proteases, which might be responsible for the observed apoptosis. In addition, GGA treatment interfered with the processing and membrane localization of Rap1 and Ras, and these changes may be a result of apoptosis. Moreover, nitric oxide donors significantly accentuated the GGA-induced apoptosis, suggesting that the apoptotic pathway induced by GGA might be regulated by a redox-sensitive mechanism. Taken together, these data suggest that the isoprenoid, GGA, is an effective inducer of apoptotic cell death in HL-60 cells.