Airborne Particulates in New York City

Abstract
This study was undertaken to identify seasonal and source effects on the par-ticulate contaminants of the New York City atmosphere and ultimately to relate the concentrations of these contaminants to the tissue concentrations in residents of New York City. Continual weekly samples of particulates have been collected at three stations in the New York area on 8 by 10 in. glass fiber filters at a flow rate of 20 cfm. The sample is ashed with a Tracerlab Low Temperature Asher and leached with nitric acid. Metals analyzed by the Atomic Absorption method include Pb, V, Cd, Cr, Cu, Mn, Ni, and Zn. Lead-210, total particulate, and benzene and acetone soluble organic material are also determined. The data have been related to various meteorological parameters over a one year period to define significant seasonal and source influences, as well as site to site variations. Very significant inverse correlations to temperature are obtained for suspended particulates, vanadium, and nickel at both Manhattan and Bronx sites. Particulates show a less significant inverse correlation to temperature In lower Manhattan. Oil-fired space heating sources appear to account for as much as 50% of the particulates in the Bronx at the peak demand period. Lead, copper, and cadmium show a general inverse correlation to average wind speed, and a direct correlation to temperature. The latter is most likely due to an inverse relation between wind speed and temperature. The heating season input for particulates, vanadium, and nickel is so great as to overcome most of the dilution effect due to winds. The other elements having more constant nonseasonal inputs, definitely reflect the effects of the wind. The most significant site effect occurs with cadmium, which has a concentration in lower Manhattan three times that of the Bronx over a period of six to seven months in the summer and fall. The differences observed for cadmium and particulates may be explained by emission source factors which have not as yet been studied.