Regulation of alpha- and beta-hemolysins by the sar locus of Staphylococcus aureus
- 1 February 1994
- journal article
- Published by American Society for Microbiology in Journal of Bacteriology
- Vol. 176 (3), 580-585
- https://doi.org/10.1128/jb.176.3.580-585.1994
Abstract
We recently identified a locus on the Staphylococcus aureus chromosome, designated sar, for staphylococcal accessory regulator, that is involved in the global regulation of extracellular and cell wall-associated proteins. Previous phenotypic and Southern blot analyses with Tn917 and agr probes indicated that this locus is distinct from agr, a previously described global regulator of exoproteins in S. aureus. To understand the mode of regulatory control of exoprotein synthesis by the sar locus, the sar genotype was transduced from the original sar mutant 11D2 into two prototypic S. aureus strains, RN6390 and RN450, with well-defined genetic backgrounds. An analysis of extracellular protein profiles by use of silver-stained sodium dodecyl sulfate gels revealed alterations in the pattern of exoprotein production in the late log-early stationary phase in the sar mutants in comparison with the corresponding parents. In addition, most of the phenotypic changes that occurred in the conversion from the sar+ genotype to the sar genotype in mutant 11D2 were also found in these mutants. Northern (RNA) blot analyses of two exoprotein transcripts (alpha- and beta-hemolysins) from strain RN6390 and its corresponding sar mutant revealed downregulation of these transcripts in the mutant. Serial studies of these hemolysin transcripts at various growth intervals demonstrated that the transcriptional regulation of the hemolysin genes by the sar locus began during the log phase and continued into the postexponential phase. These data suggested that the sar locus probably regulates exoprotein genes at the transcriptional level. This mode of regulation is similar to that of exoprotein target gene transcription by agr.Keywords
This publication has 19 references indexed in Scilit:
- Regulation of exoprotein expression in Staphylococcus aureus by a locus (sar) distinct from agr.Proceedings of the National Academy of Sciences, 1992
- Regulation of the protein A-encoding gene in Staphylococcus aureusGene, 1992
- [27] Genetic systems in StaphylococciMethods in Enzymology, 1991
- Nucleotide sequence: the β-hemolysin gene ofStaphylococcus aureusNucleic Acids Research, 1989
- A rapid method to quantitate non-labeled RNA species in bacterial cellsGene, 1988
- Inactivation of the alpha-haemolysin gene of Staphylococcus aureus 8325-4 by site-directed mutagenesis and studies on the expression of its haemolysinsMicrobial Pathogenesis, 1986
- Regulation of exoprotein gene expression in Staphylococcus aureus by agrMolecular Genetics and Genomics, 1986
- A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blotsAnalytical Biochemistry, 1984
- Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proceedings of the National Academy of Sciences, 1979
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970