A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows

Abstract
The dynamic subgrid‐scale eddy viscosity model of Germano et al. [Phys. Fluids A 3, 1760 (1991)] (DSM) is modified by employing the mixed model of Bardina et al. [Ph.D dissertation, Stanford University (1983)] as the base model. The new dynamic mixed model explicitly calculates the modified Leonard term and only models the cross term and the SGS Reynolds stress. It retains the favorable features of DSM and, at the same time, does not require that the principal axes of the stress tensor be aligned with those of the strain rate tensor. The model coefficient is computed using local flow variables. The new model is incorporated in a finite‐volume solution method and large‐eddy simulations of flows in a lid‐driven cavity at Reynolds numbers of 3200, 7500, and 10 000 show excellent agreement with the experimental data. Better agreement is achieved by using the new model compared to the DSM. The magnitude of the dynamically computed model coefficient of the new model is significantly smaller than that from DSM.

This publication has 22 references indexed in Scilit: