Characterization of the Phospholipases ofBacillus cereusand Their Effects on Erythrocytes, Bone, and Kidney Cells

Abstract
Slein, MiltonW. (Fort Detrick, Frederick, Md.),and Gerald F. Logan, Jr. Characterization of the phospholipases ofBacillus cereusand their effects on erythrocytes, bone, and kidney cells. J. Bacteriol.90:69–81. 1965.—Culture filtrates ofBacillus cereuscontain phospholipases that split phosphoryl choline, phosphoryl ethanolamine, and phosphoryl inositol from the phospholipids phosphatidyl choline (PTC), sphingomyelin, phosphatidyl ethanolamine (PTE), and phosphatidyl inositol (PTI). It is possible that one enzyme catalyzes the degradation of PTE and PTC, but the other phospholipases appear to be separate entities. Some activity on phosphatidyl serine has also been noted. Quantitative paper chromatography has been used for characterizing the phospholipases that are separated onN,N′-diethylaminoethyl cellulose columns. A procedure for the analysis of inositol is included. A sensitive kidney cortex homogenate test is described that depends on the release of alkaline phosphatase for the measurement of phosphatasemia factor (PF) activity associated with the phospholipases. The effects of the phospholipases on erythrocytes, kidney, and bone cells are discussed. Hemolysin activity is inhibited by crude soybean “lecithin,” but hemolysis does not seem to be identical with PTE- or PTC-phospholipase activity. PF activity is also inhibited by the “lecithin.” Highest PF activity is associated with PTI-phospholipase. The phospholipase fractions differ in their sensitivities to trypsin. Phospholipases with similar properties have been obtained from culture filtrates ofB. anthracis.