Oxidation-triggered c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways for apoptosis in human leukaemic cells stimulated by epigallocatechin-3-gallate (EGCG): a distinct pathway from those of chemically induced and receptor-mediated apoptosis
- 15 December 2002
- journal article
- Published by Portland Press Ltd. in Biochemical Journal
- Vol. 368 (3), 705-720
- https://doi.org/10.1042/bj20020101
Abstract
We investigated intracellular signalling pathways for apoptosis induced by epigallocatechin-3-gallate (EGCG) as compared with those induced by a toxic chemical substance (etoposide, VP16) or the death receptor ligand [tumour necrosis factor (TNF)]. EGCG as well as VP16 and TNF induced activation of two apoptosis-regulating mitogen-activated protein (MAP) kinases, namely c-Jun N-terminal kinase (JNK) and p38 MAP kinase, in both human leukaemic U937 and OCI-AML1a cells. In U937 cells, the apoptosis and activation of caspases-3 and −9 induced by EGCG but not VP16 and TNF were inhibited with SB203580, a specific inhibitor of p38, while those induced by EGCG and VP16 but not TNF were inhibited with SB202190, a rather broad inhibitor of JNK and p38. In contrast, the EGCG-induced apoptosis in OCI-AML1a cells was resistant to SB203580 but not to SB202190. Unlike TNF, EGCG did not induce the activation of nuclear factor-κB but rather induced the primary activation of caspase-9. N-Acetyl-l-cysteine (NAC) almost completely abolished apoptosis induced by EGCG under conditions in which the apoptosis induced by VP16 or TNF was not affected. The JNK/p38 activation by EGCG was also potently inhibited by NAC, whereas those by VP16 and TNF were either not or only minimally affected by NAC. In addition, dithiothreitol also suppressed both apoptosis and JNK/p38 activation by EGCG, and EGCG-induced activation of MAP kinase kinase (MKK) 3/6, MKK4 and apoptosis-regulating kinase 1 (ASK1) was suppressed by NAC. Dominant negative ASK1, MKK6, MKK4 and JNK1 potently inhibited EGCG-induced cell death. EGCG induced an intracellular increase in reactive oxygen species and GSSG, both of which were also inhibited by NAC, and the decreased synthesis of glutathione rendered the cell susceptible to EGCG-induced apoptosis. Taken together these results strongly suggest that EGCG executed apoptotic cell death via an ASK1, MKK and JNK/p38 cascade which is triggered by NAC-sensitive intracellular oxidative events in a manner distinct from chemically induced or receptor-mediated apoptosis.Keywords
This publication has 56 references indexed in Scilit:
- Inhibition of UVB-Induced Oxidative Stress-Mediated Phosphorylation of Mitogen-Activated Protein Kinase Signaling Pathways in Cultured Human Epidermal Keratinocytes by Green Tea Polyphenol (−)-Epigallocatechin-3-gallateToxicology and Applied Pharmacology, 2001
- p38 Mitogen-activated Protein Kinase Regulates a Novel, Caspase-independent Pathway for the Mitochondrial Cytochromec Release in Ultraviolet B Radiation-induced ApoptosisJournal of Biological Chemistry, 2000
- Involvement of Caspase-3 in Epigallocatechin-3-gallate-Mediated Apoptosis of Human Chondrosarcoma CellsBiochemical and Biophysical Research Communications, 2000
- Caspases – controlling intracellular signals by protease zymogen activationBiochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 2000
- From receptors to stress-activated MAP kinasesOncogene, 1999
- Redox Signals and NF-κB Activation in T CellsFree Radical Biology & Medicine, 1998
- Green Tea Constituent Epigallocatechin-3-Gallate and Induction of Apoptosis and Cell Cycle Arrest in Human Carcinoma CellsJNCI Journal of the National Cancer Institute, 1997
- Induction of Apoptosis by ASK1, a Mammalian MAPKKK That Activates SAPK/JNK and p38 Signaling PathwaysScience, 1997
- Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radicalFree Radical Biology & Medicine, 1996
- Colony-Stimulating Factor (CSF)-Dependent Growth of Two Leukemia Cell LinesLeukemia & Lymphoma, 1992