Stabilization Method of Calculating Resonance Energies: Model Problem
- 1 April 1970
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review A
- Vol. 1 (4), 1109-1120
- https://doi.org/10.1103/physreva.1.1109
Abstract
We have applied the stabilization method of calculating resonance energies to the elastic scattering from a one-dimensional model potential containing a barrier. For sufficiently large basis sets, the stabilization method yields good approximations to the inner part of the exact scattering wave functions at energies equal to the eigenvalues of the truncated matrix of the Hamiltonian in both the resonant and nonresonant energy regions. We have calculated good approximations to the exact phase shifts from the square-integrable wave functions produced by the stabilization method. We have derived a simple model to explain the behavior of the eigenvalues as a function of the size of the basis. The degree of stability of the eigenvalues approximating the resonance energy is proportional to the width of the resonance. Both the energy and the width of the resonance can be calculated from the change in the stable eigenvalue as the size of the basis increases.Keywords
This publication has 17 references indexed in Scilit:
- Exact Treatment of the Stark Effect in Atomic HydrogenPhysical Review B, 1969
- Variational-Bound Method for Autoionization StatesPhysical Review B, 1969
- Resonances in Electron Scattering by Atoms and MoleculesPublished by Elsevier ,1968
- Resonant States of H2−The Journal of Chemical Physics, 1967
- Resonances in the Scattering of Electrons from AtomsPhysical Review B, 1966
- New Investigation of the 1SeAutoionizing States of He and H−The Journal of Chemical Physics, 1966
- Auto-Ionizing States in HeliumPhysical Review B, 1966
- A unified theory of nuclear reactions. IIAnnals of Physics, 1962
- Effects of Configuration Interaction on Intensities and Phase ShiftsPhysical Review B, 1961
- Numerische Berechnung der 2S-Terme von Ortho- und Par-HeliumThe European Physical Journal A, 1930