Evolution and functional significance of tendon ossification in woodcreepers (Aves: Passeriformes: Dendrocolaptinae)

Abstract
The woodcreepers, a clade of scansorial, neotropical birds, are distinctive among passerines in having extensive tendon ossification. Dissection of 42 of the 50 species indicates that such ossification in the hindlimb is limited almost entirely to tendons of insertion of the crural muscles. Most crural muscles have ossifications, and in all but one the ossified tendons are long and thin. Preliminary dissection revealed a similar pattern among ossified wing tendons. Phylogenetic analysis suggests that extensive tendon ossification is a synapomorphy of the woodcreepers. The species of Dendrocincla, which form a clade, show secondary reduction of ossification in some tendons, which may be correlated with increased intraspecific variation and with an expansion of foraging habits and postures to include nonscansorial behaviors. In contrast, the larger woodcreepers, other than Drymornis bridgesii and Nasica longirostris, form a clade with virtually no loss in ossification or evidence of intraspecific variation, even in large series of two species. Phylogenetic losses do not occur for the primary flexor of the ankle (M. tibialis cranialis), whereas two extensors (Mm. fibularis longus and gastrocnemius pars lateralis) show a complex pattern of derivation and loss. Previous biomechanical studies demonstrate that ossification increases the stiffness of tendons, making them stretch less under a given force. These structural and phylogenetic patterns are consistent with the view that hindlimb tendon ossification in woodcreepers is an adaptation to resist increased forces that act to extend the limb during vertical climbing.