Discharge Model for the Lithium Iron-Phosphate Electrode
Top Cited Papers
- 1 January 2004
- journal article
- Published by The Electrochemical Society in Journal of the Electrochemical Society
- Vol. 151 (10), A1517-A1529
- https://doi.org/10.1149/1.1785012
Abstract
This paper develops a mathematical model for lithium intercalation and phase change in an iron phosphate-based lithium-ion cell in order to understand the cause for the low power capability of the material. The juxtaposition of the two phases is assumed to be in the form of a shrinking core, where a shell of one phase covers a core of the second phase. Diffusion of lithium through the shell and the movement of the phase interface are described and incorporated into a porous electrode model consisting of two different particle sizes. Open-circuit measurements are used to estimate the composition ranges of the single-phase region. Model-experimental comparisons under constant current show that ohmic drops in the matrix phase, contact resistances between the current collector and the porous matrix, and transport limitations in the iron phosphate particle limit the power capability of the cells. Various design options, consisting of decreasing the ohmic drops, using smaller particles, and substituting the liquid electrolyte by a gel are explored, and their relative importance discussed. The model developed in this paper can be used as a means of optimizing the cell design to suit a particular application. © 2004 The Electrochemical Society. All rights reserved.Keywords
This publication has 37 references indexed in Scilit:
- Electrochemical Analysis of Lithiated Graphite AnodesJournal of the Electrochemical Society, 2003
- Electronically conductive phospho-olivines as lithium storage electrodesNature Materials, 2002
- Optimized LiFePO[sub 4] for Lithium Battery CathodesJournal of the Electrochemical Society, 2001
- Environmental Ozone Effect on the Growth of Hemispherical Grained Silicon for ULSI DRAM Stacked CapacitorJournal of the Electrochemical Society, 2001
- Comparison between computer simulations and experimental data for high-rate discharges of plastic lithium-ion batteriesJournal of Power Sources, 2000
- A Mathematical Model for Intercalation Electrode Behavior: I. Effect of Particle‐Size Distribution on Discharge CapacityJournal of the Electrochemical Society, 1998
- Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium BatteriesJournal of the Electrochemical Society, 1997
- Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion CellsJournal of the Electrochemical Society, 1996
- Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion CellJournal of the Electrochemical Society, 1993
- Modeling of Porous Insertion Electrodes with Liquid ElectrolyteJournal of the Electrochemical Society, 1982