Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide
Top Cited Papers
Open Access
- 1 August 2001
- journal article
- Published by Wiley in The Journal of Physiology
- Vol. 534 (3), 813-825
- https://doi.org/10.1111/j.1469-7793.2001.00813.x
Abstract
1 The effects of activation of protein kinase C (PKC) on membrane currents gated by capsaicin, protons, heat and anandamide were investigated in primary sensory neurones from neonatal rat dorsal root ganglia (DRG) and in HEK293 cells (human embryonic kidney cell line) transiently or stably expressing the human vanilloid receptor hVR1. 2 Maximal activation of PKC by a brief application of phorbol 12-myristate 13-acetate (PMA) increased the mean membrane current activated by a low concentration of capsaicin by 1.65-fold in DRG neurones and 2.18-fold in stably transfected HEK293 cells. Bradykinin, which activates PKC, also enhanced the response to capsaicin in DRG neurones. The specific PKC inhibitor RO31-8220 prevented the enhancement caused by PMA. 3 Activation of PKC did not enhance the membrane current at high concentrations of capsaicin, showing that PKC activation increases the probability of channel opening rather than unmasking channels. 4 Application of PMA alone activated an inward current in HEK293 cells transiently transfected with VR1. The current was suppressed by the VR1 antagonist capsazepine. PMA did not, however, activate a current in the large majority of DRG neurones nor in HEK293 cells stably transfected with VR1. 5 Removing external Ca2+ enhanced the response to a low concentration of capsaicin 2.40-fold in DRG neurones and 3.42-fold in HEK293 cells. Activation of PKC in zero Ca2+ produced no further enhancement of the response to capsaicin in either DRG neurones or HEK293 cells stably transfected with VR1. 6 The effects of PKC activation on the membrane current gated by heat, anandamide and low pH were qualitatively similar to those on the capsaicin-gated current. 7 The absence of a current activated by PMA in most DRG neurones or in stably transfected HEK293 cells suggests that activation of PKC does not directly open VR1 channels, but instead increases the probability that they will be activated by capsaicin, heat, low pH or anandamide. Removal of calcium also potentiates activation, and PKC activation then has no further effect. The results are consistent with a model in which phosphorylation of VR1 by PKC increases the probability of channel gating by agonists, and in which dephosphorylation occurs by a calcium-dependent process.Keywords
This publication has 29 references indexed in Scilit:
- Cloning and functional expression of a human orthologue of rat vanilloid receptor-1Pain, 2000
- Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesiaNature, 2000
- Impaired Nociception and Pain Sensation in Mice Lacking the Capsaicin ReceptorScience, 2000
- The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1)British Journal of Pharmacology, 2000
- Specific Involvement of PKC-ε in Sensitization of the Neuronal Response to Painful HeatNeuron, 1999
- The Cloned Capsaicin Receptor Integrates Multiple Pain-Producing StimuliNeuron, 1998
- Ca2+and Na+permeability of high-threshold Ca2+channels and their volt age-dependent block by Mg2+ions in chick sensory neuronesThe Journal of Physiology, 1997
- The Protein Kinase C Family for Neuronal SignalingAnnual Review of Neuroscience, 1994
- The role of calcium in capsaicin-induced desensitization in rat cultured dorsal root ganglion neuronsNeuroscience, 1993
- Psychophysical detection and pain ratings of incremental thermal stimuli: A comparison with nociceptor responses in humansBrain Research, 1983