Plasmonic nanoparticle enhanced light absorption in GaAs solar cells

Abstract
We demonstrate an improvement in efficiency of optically thin GaAs solar cells decorated with size-controlled Ag nanoparticles fabricated by masked deposition through anodic aluminum oxide templates. The strong scattering by the interacting surface plasmons in densely formed high aspect-ratio nanoparticles effectively increases the optical path of the incident light in the absorber layers resulting in an 8% increase in the short circuit current density of the cell. The nanoparticle array sheet conductivity also reduces the cell surface sheet resistance evidenced by an improved fill factor. This dual function of plasmonic nanoparticles has potential to enable thinner photovoltaic layers in solar cells.