Structures and Electrical Properties of Ag–Tetracyanoquinodimethane Organometallic Nanowires

Abstract
Ag-tetracyanoquinodimethane (Ag-TCNQ) nanostructures are synthesized using both solution reaction in acetonitrile and a novel vacuum-saturated vapor reaction method. Experiments show that the latter synthesis method produces Ag-TCNQ nanowires with better uniformity and higher aspect ratio. These nanowires, having diameters around 100 nm and lengths about 5 /spl mu/m, could serve as potential building blocks of nanoscale electronics. Nanodevices based on these nanowires are fabricated using the electron-beam lithography technique. Electrical transport study shows reproducible I--V hysteresis with a change in resistance of four orders of magnitude, demonstrating electrical memory effect. This electrical bistability makes Ag-TCNQ nanowires a promising candidate for future applications in ultrahigh-density information storage.