Selective neurodegeneration is a prominent feature in Alzheimer's disease; however, the mechanism of neuronal death is still unclear. Nonetheless, the topographical distribution of different types of receptors is thought to contribute to the regional selective nature of neuronal degeneration. Specifically, since glutamatergic transmission is severely altered by the early degeneration of cortico-cortical connections and hippocampal projections in Alzheimer's disease, we suspect that glutamate receptors may play a new role in the pathophysiology of disease. Here we review the salient aspects of glutamate receptor expression in Alzheimer's disease and how their differential regulation can contribute to the selective neurodegeneration seen in the disease. Additionally, we assess the potential therapeutic value of glutamate receptors as a target for drug intervention in Alzheimer's disease.