Segregated signal averaging of sympathetic baroreflex responses in humans.

Abstract
The goal of this study was to merge the methods currently used to assess beat-by-beat changes in muscle sympathetic nerve activity with a signal-averaging approach and overcome the inherent subjectivity and time-consuming nature of manual analysis of baroreflex-mediated sympathetic responses in humans. This is a retrospective study using data obtained during two prior studies [J. R. Halliwill, J. A. Taylor, and D. L. Eckberg. J. Physiol. (Lond.) 495: 279–288, 1996; C. T. Minson, J. R. Halliwill, T. Young, and M. J. Joyner. FASEB J. 13: A1044, 1999]. Beat-by-beat arterial pressure (Finapres device) and muscle sympathetic nerve activity (microneurography) were recorded in seven healthy, nonsmoking, normotensive subjects (2 men, 5 women) between the ages of 23 and 32 yr during arterial pressure changes induced by bolus injections of nitroprusside and phenylephrine. The muscle sympathetic nerve activity-diastolic pressure relationship was analyzed by both the traditional manual detection method and a novel segregated signal-averaging method. The results show the two analysis approaches are highly correlated across subjects ( r = 0.914, P < 0.05) and are in close agreement [slope for manual detection −6.17 ± 0.91 (SE) vs. slope for segregated signal averaging −5.98 ± 0.83 total integrated activity ⋅ beat−1 ⋅ mmHg−1; P = 0.60]. However, a considerable time savings is seen with the new method (min vs. h). Segregated signal averaging as developed here provides a valid alternative to “by-hand” analysis of beat-by-beat changes in muscle sympathetic nerve activity that occur during dynamic baroreflex-mediated changes in sympathetic outflow. This approach provides an objective, rapid method to analyze nerve recordings.