Rise and Fall of Surface Level of Water Solutions under High Magnetic Field

Abstract
Magnetic field effects on the surface profile have been investigated for water and copper sulfate aqueous solutions that have very small magnetic susceptibility. When a field of 10 T is applied in a horizontal superconducting magnet, the surface of distilled water was lowered by 39 mm at the field center, relative to the level at the zero field region (Moses effect). In contrast, the surface of a nearly saturated copper sulfate aqueous solution was raised by roughly the same height at the center (reversed Moses effect). The profiles were systematically explained based on the dia- and paramagnetic volume susceptibility values of distilled water and copper sulfate aqueous solution, respectively.

This publication has 4 references indexed in Scilit: