Bitter stimuli induce Ca2+ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive Ca2+ channels
- 1 October 2006
- journal article
- Published by American Physiological Society in American Journal of Physiology-Cell Physiology
- Vol. 291 (4), C726-C739
- https://doi.org/10.1152/ajpcell.00003.2006
Abstract
We previously demonstrated the expression of bitter taste receptors of the type 2 family (T2R) and the α-subunits of the G protein gustducin (Gαgust) in the rodent gastrointestinal (GI) tract and in GI endocrine cells. In this study, we characterized mechanisms of Ca2+ fluxes induced by two distinct T2R ligands: denatonium benzoate (DB) and phenylthiocarbamide (PTC), in mouse enteroendocrine cell line STC-1. Both DB and PTC induced a marked increase in intracellular [Ca2+] ([Ca2+]i) in a dose- and time-dependent manner. Chelating extracellular Ca2+ with EGTA blocked the increase in [Ca2+]i induced by either DB or PTC but, in contrast, did not prevent the effect induced by bombesin. Thapsigargin blocked the transient increase in [Ca2+]i induced by bombesin, but did not attenuate the [Ca2+]i increase elicited by DB or PTC. These results indicate that Ca2+ influx mediates the increase in [Ca2+]i induced by DB and PTC in STC-1 cells. Preincubation with the L-type voltage-sensitive Ca2+ channel (L-type VSCC) blockers nitrendipine or diltiazem for 30 min inhibited the increase in [Ca2+]i elicited by DB or PTC. Furthermore, exposure to the L-type VSCCs opener BAY K 8644 potentiated the increase in [Ca2+]i induced by DB and PTC. Stimulation with DB also induced a marked increase in the release of cholecystokinin from STC-1 cells, an effect also abrogated by prior exposure to EGTA or L-type VSCC blockers. Collectively, our results demonstrate that bitter tastants increase [Ca2+]i and cholecystokinin release through Ca2+ influx mediated by the opening of L-type VSCCs in enteroendocrine STC-1 cells.Keywords
This publication has 87 references indexed in Scilit:
- Enteroendocrine cell expression of a cholecystokinin gene construct in transgenic mice and cultured cellsAmerican Journal of Physiology-Gastrointestinal and Liver Physiology, 2005
- TCF-4 Mediates Cell Type-specific Regulation of Proglucagon Gene Expression by β-Catenin and Glycogen Synthase Kinase-3βJournal of Biological Chemistry, 2005
- Ser1928 Is a Common Site for Cav1.2 Phosphorylation by Protein Kinase C IsoformsJournal of Biological Chemistry, 2005
- Intracellular Ca 2+ and the phospholipid PIP 2 regulate the taste transduction ion channel TRPM5Proceedings of the National Academy of Sciences, 2003
- TRPM5 Is a Voltage-Modulated and Ca2+-Activated Monovalent Selective Cation ChannelCurrent Biology, 2003
- Coding of Sweet, Bitter, and Umami TastesCell, 2003
- A transient receptor potential channel expressed in taste receptor cellsNature Neuroscience, 2002
- Fatty acid‐induced cholecystokinin secretion and changes in intracellular Ca2+ in two enteroendocrine cell lines, STC‐1 and GLUTagThe Journal of Physiology, 2000
- Intestinal-type fibroblasts selectively influence proliferation rate and peptide synthesis in the murine entero-endocrine cell line STC-1Differentiation, 1997
- CHOLECYSTOKININ CELLSAnnual Review of Physiology, 1997