Abstract
The lattice collapse and potassium fixation upon heating was studied for four expanding clay minerals in the potassium form by determining the change in X-ray patterns, and the decrease of both the cation exchange capacity and the total surface area derived from water vapour adsorption isotherms.In the literature, two factors promoting collapse have been considered: a high degree of tetrahedral substitution and a high potassium ion population in the unit layer surface. For the four minerals studied these two factors varied between wide limits, and the ease and degree of collapse were indeed found to correlate with these two factors. A third factor which has been considered previously is the degree of crystallinity of the mineral, which is determined by the origin of the clay. For the two bentonites which were investigated, one shows poor crystallinity, indicating its volcanic origin, the other shows a higher degree of crystallinity with boundary conformity in stacks of layers, indicating its formation by weathering of a micaceous mineral. The latter shows a higher degree of collapse.

This publication has 1 reference indexed in Scilit: