A high-performance end system architecture for real-time CORBA

Abstract
Many application domains (e.g., avionics, telecommunications, and multimedia) require real-time guarantees from the underlying networks, operating systems, and middleware components to achieve their quality of service (QoS) requirements. In addition to providing end-to-end QoS guarantees, applications in these domains must be flexible and reusable. Requirements for flexibility and reusability motivate the use of object-oriented middleware like the Common Object Request Broker Architecture (CORBA). However, the performance of current CORBA implementations is not yet suited for hard real-time systems (e.g., avionics) and constrained latency systems (e.g., teleconferencing). This article describes the architectural features and optimizations required to develop real-time ORB end systems that can deliver end-to-end QoS guarantees to applications. While some operating systems, networks, and protocols now support real-time scheduling, they do not provide integrated solutions. The main thrust of this article is that advances in real-time distributed object computing can be achieved only by systematically pinpointing performance bottlenecks; optimizing the performance of networks, ORB end systems, common services, and applications; and simultaneously integrating techniques and tools that simplify application development

This publication has 8 references indexed in Scilit: