Methods for Evaluating Cardiac Wall Motion in Three Dimensions Using Bifurcation Points of the Coronary Arterial Tree

Abstract
An accurate three-dimensional (3D) representation of heart wall motion would be an important means of evaluating cardiac function. To accomplish this, we have developed an interactive computer graphics system designed to enter the time-dependent 3D positions of bifurcations of the coronary arterial tree. These bifurcations are precise markers of the epicardial surface, and their motions accurately represent the motion of the underlying heart wall. We demonstrate techniques for calculating local wall motion, including displacement and velocity, for determining a time-dependent center-of-contraction point towards which the epicardium tends to move and for tracking the mechanical contraction wave using cross-correlation methods. We have applied these techniques to study seven patients with normal left ventriculograms and coronary arteriograms. We have found these methods to be generally applicable and to provide information not obtainable without 3D analysis.