De novo heme proteins from designed combinatorial libraries
Open Access
- 31 December 1997
- journal article
- research article
- Published by Wiley in Protein Science
- Vol. 6 (12), 2512-2524
- https://doi.org/10.1002/pro.5560061204
Abstract
We previously reported the design of a library of de novo amino acid sequences targeted to fold into four-helix bundles. The design of these sequences was based on a “binary code” strategy, in which the patterning of polar and non-polar amino acids is specified explicitly, but the exact identities of the side chains is varied extensively (Kamtekar S, Schiffer JM, Xiong H, Babik JM, Hecht MH, 1993, Science 262:1680-1685). Because of this variability, the resulting collection of amino acid sequences may include de novo proteins capable of binding biologically important cofactors. To probe for such binding, the de novo sequences were screened for their ability to bind the heme cofactor. Among an initial collection of 30 binary code sequences, 15 are shown to bind heme and form bright red complexes. Characterization of several of these de novo heme proteins demonstrated that their absorption spectra and resonance Raman spectra resemble those of natural cytochromes. Because the design of these sequences is based on global features of polar/nonpolar patterning, the finding that half of them bind heme highlights the power of the binary code strategy, and demonstrates that isolating de novo heme proteins does not require explicit design of the cofactor binding site. Because bound heme plays a key role in the functions of many natural proteins, these results suggest that binary code sequences may serve as initial prototypes for the development of large collections of functionally active de novo proteins.Keywords
This publication has 35 references indexed in Scilit:
- A Protein Designed by Binary Patterning of Polar and Nonpolar Amino Acids Displays Native-like PropertiesJournal of the American Chemical Society, 1997
- Toward the Synthesis of a Photosynthetic Reaction Center Maquette: A Cofacial Porphyrin Pair Assembled between Two Subunits of a Synthetic Four-Helix Bundle Multiheme ProteinJournal of the American Chemical Society, 1996
- The Association Rate Constant for Heme Binding to Globin Is Independent of Protein StructureBiochemistry, 1996
- Refined Structure of Cytochromeb562fromEscherichia coliat 1.4 Å ResolutionJournal of Molecular Biology, 1995
- Design of a heme-binding four-helix bundleJournal of the American Chemical Society, 1994
- Photodissociable endogenous ligand in alkaline-reduced cytochrome c peroxidase implicates distal protein tensionBiochemistry, 1989
- Structure of ferricytochrome c′ from Rhodospirillum molischianum at 1.67 Å resolutionJournal of Molecular Biology, 1985
- Structural correlations and vinyl influences in resonance Raman spectra of protoheme complexes and proteinsJournal of the American Chemical Society, 1982
- Protein control of porphyrin conformation. Comparison of resonance Raman spectra of heme proteins with mesoporphyrin IX analogsJournal of the American Chemical Society, 1976
- Resonance Raman spectra of horseradish peroxidase. Evidence for anomalous heme structureBiochemistry, 1974