Scaling Laws for Microemulsions Governed by Spontaneous Curvature

Abstract
We introduce a model for microemulsions whose basic building blocks are cylindrical tubes connected by spherical junctions forming a network. The model predicts analytic scaling laws which quantitatively reproduce several prominent experimental features of the phase diagram, including the closed loops of 2-phase coexistence and the 3-phase body. The interfacial nature of our model, which takes into account only the curvature energy and the entropy of the interface, explains the observed water/oil symmetry and the collapse of the experimental data onto a single universal scaling curve.