pH regulation in single glomerular mesangial cells. I. Acid extrusion in absence and presence of HCO3-

Abstract
We have developed a technique to measure the fluorescence of a pH-sensitive dye (2,7-biscarboxyethyl-5(6)-carboxyfluorescein) in single glomerular mesangial cells in culture. The intracellular fluorescence excitation ratio of the dye was calibrated using the nigericin-high-K+ approach. In the absence of CO2-HCO3-, mesangial cells that are acid loaded by an NH+4 prepulse exhibit a spontaneous intracellular pH (pHi) recovery that is blocked either by ethylisopropylamiloride (EIPA) or removal of external Na+. This pHi recovery most probably reflects the activity of a Na+-H+ exchanger. When the cells are switched from a N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)-buffered solution to one containing CO2-HCO3-, there is an abrupt acidification due to CO2 entry, which is followed by a spontaneous recovery of pHi to a steady-state value higher than that prevailing in HEPES. Both the rate of recovery and the higher steady-state pHi imply that the application of CO2-HCO3- introduces an increase in net acid extrusion from the cell. One third of total net acid extrusion in CO2-HCO3- is EIPA sensitive and most likely is mediated by the Na+-H+ exchanger. The remaining two thirds of acid extrusion could be caused by a decrease in the background acid-loading rate and/or the introduction of a new, HCO3- -dependent acid-extrusion mechanism. The HCO3- -induced alkalinization cannot be accounted for by a HCO3- -induced reduction in the acid-loading rate. The latter can be estimated by applying EIPA in the absence of HCO3- and observing the rate of pHi decline. We found that this acid-loading rate is only about one fifth as great as the total net acid extrusion rate in the presence of HCO3-. Indeed, two thirds of net acid extrusion in HCO3- is blocked by 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS), an inhibitor of HCO3- -dependent transport. Furthermore, the effects of EIPA and SITS were additive. Thus, in the presence of CO2-HCO3-, a SITS-sensitive-HCO3- -dependent transporter is the dominant mechanism of acid extrusion. This mechanism also accounts for the increase in steady-state pHi on addition of CO2-HCO3-.